21 minutes
PE Industrial Engineer Reference Sheet
You contribute to the reference sheet here: https://github.com/tomroh/pe_ise_prep.
Systems Definition, Analysis, and Design
System Analysis and Design Tools
Cause-Effect Diagram (Fishbone)
Pareto Analysis
80% of the items represent 20% of the sales or 20% of the items represent 80% of the cost. This law is a rule of thumb.
Operation Process Chart
The operation process chart only has Operations and Inspections.
Flow Process Chart
The flow process chart forces a more detailed look at a system.
Affinity Diagram
organizes a large number of ideas into their natural relationships
Left Hand Right Hand Chart
Shows when each hand is busy and idle. It is sometimes called a simo chart.
Modeling Techniques
Queueing Models
$$Little's \: Law$$
$$L = \lambda W$$
\(M/M/c/K\quad Queue\)
Effective vs. Offered Load:
$$\lambda_{eff} = \lambda(1-\pi_m)$$
Waiting Time Law:
$$L = \sum_{n=0}^Mn\pi_n$$
$$L_q = \sum_{n=c+1}^{c-1}(n-c)\pi_n$$
Probability of n arrivals by time t:
$$P[N(t)=n]=\frac{(\lambda t)^ne^{-\lambda t}}{n!}$$
\(M/M/1/\infty\quad Queue\)
Probability of customers in system:
$$\pi_0=1-\rho$$
$$\pi_n=\rho^n(1-\rho)$$
$$L = \frac{\rho}{1-\rho}$$
$$L_q = L-\rho=\frac{\rho^2}{1-\rho}$$
\(M/G/1/\infty\quad Queue\)
Pollaczek-Khintchine Formula:
$$L = L_q+\rho=\frac{\rho^2+\lambda^2\sigma^2}{2(1-\rho)}+\rho$$
\(M/M/c/M\quad Queue\)
$$D = \sum_{n=0}^{c-1}\frac{\rho^n}{n!}+\frac{\rho^c}{c!}[\frac{1-(\rho/c)^{M-c+1}}{1-\rho/c}]$$
$$\pi_0=\frac{1}{D}$$
$$\pi_n= \begin{cases} \frac{\rho^n}{n!}\pi_0, \quad \text{n<c} \\ \frac{\rho^n}{c!c^{n-c}}\pi_0, \quad {n\geq c} \end{cases}$$
$$L_q=\pi_0\bigg(\frac{\rho^{c+1}}{(c-1)!(c-\rho)^2}\bigg) \bigg[1-\big(\frac{\rho}{c}\big)^{M-c}-(M-c)\big(\frac{\rho}{c}\big)^{M-c}\big(1-\frac{\rho}{c}\big)\bigg],\quad \rho\neq c$$
$$L_q=\pi_0\bigg(\frac{\rho^c (M-c)(M-c+1)}{2c!}\bigg),\quad \rho=c$$
$$L_q=\pi_0\bigg(\frac{\rho^{c+1}}{(c-1)!(c-\rho)^2}\bigg),\quad c=\infty$$
\(M/M/C/\infty \quad Queue\)
C = 1
$$P_0=1-\rho ,\quad L_q=\frac{\rho^2}{1-\rho}$$
C = 2
$$P_0=\frac{(1-\rho)}{(1=\rho}, \quad L_q = \frac{2\rho^3}{(1-\rho^2)}$$
C = 3
$$P_0 = \frac{2(1-\rho)}{2+4\rho+3\rho^2}, \quad \frac{9\rho^4}{2+2\rho-\rho^2-3\rho^3}$$
Model Verification
A model has been verified if a range of models produce similar results on the same situation
Model Validation
A model has been validated if a range of results produce similar results on the same situation
Bottleneck Analysis
Optimize the process that is the bottleneck, then re-evaulate the bottleneck and repeat.
Facilities Engineering and Planning
People/Equipment Requirements
$$M_j = \sum_{i=1}^{n} \frac{P_{ij}T_{ij}}{C_{ij}}$$
$$M_j = \textrm{number of machines/people} \\ P = \textrm{production rate} \\ T = \textrm{production time} \\ C = \textrm{production period} \\ n = \textrm{number of products}$$
Material Handling
Euclidian:
$$d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
To optimize material flow:
$$min\quad \sum_{i=1}^mw_i[(x-a_i)^2+(y-b_i)]^{\frac{1}{2}}$$
If there are 4 locations with equal weight, the optimal location is the facility
within a triangle of the other facilities. If there is no such facility,
the optimal location is at the intersection of two lines.
When the weighted costs are proportional to the square of the Euclidean distance, it is called the ‘gravity’ problem.
$$min\quad \sum_{i=1}^mw_i[(x-a_i)^2+(y-b_i)^2]$$
$$x = \frac{\sum_{i=1}^mw_ia_i}{\sum_{i=1}^mw_i}$$
$$y = \frac{\sum_{i=1}^mw_ib_i}{\sum_{i=1}^mw_i}$$
Manhattan:
$$|x_2-x_1| + |y_2-y_1|$$
To optimize flow:
$$min\quad \sum_{i=1}^m w_i(|x-a_1|+|y-b_i|)$$
The x value is the median of the location x-coordinates. The y value is the median of the location y-coordinates.
Chebyshev (simultaneous x and y movement)
$$max(|x_2-x_1|,|y_2-y_1|)$$
Relationship Chart
Code | Closeness | Rank |
---|---|---|
A | Absolutely Necessary | 0.95 |
E | Especially Important | 0.85 |
I | Important | 0.7 |
O | Ordinary Closeness | 0.5 |
U | Unimportant | 0 |
X | Not desirable | - |
Supply Chain Logistics
Forecasting Methods
Moving Average
$$\hat{d}_t = \frac{\sum_{i=1}^{n}d_{t-i}}{n}$$
Exponentially Weighted Moving Average
$$\hat{d}_t = \alpha d_{t-1}+(1-\alpha)\hat{d}_{t-1},\quad 0 \leq \alpha( \textrm{smoothing constant})\leq1 \\ d_{t-1} \text{ = actual demand, } \hat{d}_{t-1} \text{ = forecasted demand}$$
Production Planning Methods
Systems to compute Master Production and Ordering Plan
Material Requirements Planning (MRP)
Manufacturing Resource Planning (MRPII)
Engineering Economics
$$\bigg(\frac{F}{P}\bigg)= (1+i)^N, \quad \bigg(\frac{P}{F}\bigg)= \frac{1}{(1+i)^N} \\ \bigg(\frac{F}{A}\bigg)= \frac{(1+i)^N-1}{i}, \quad \bigg(\frac{P}{A}\bigg)= \frac{(1+i)^N-1}{i(1+i)^N} \\ \bigg(\frac{A}{F}\bigg)= \frac{i}{(1+i)^N-1}, \quad \bigg(\frac{A}{P}\bigg)= \frac{i(1+i)^N}{(1+i)^N-1} \\ \bigg(\frac{P}{G}\bigg)=\frac{1}{i}\bigg[\frac{(1+i)^N-1}{i(1+i)^N}-\frac{N}{(1+i)^N} \bigg], \quad \bigg(\frac{A}{G}\bigg)=\frac{1}{i}-\frac{N}{(1+i)^N-1}$$
*Denominator is current value and Numerator is desired conversion
Depreciation
Modified Accelerated Cost Recovery System (MACRS) - See Tables
$$\text{Straight Line (SL) - } \frac{1}{n}$$
Production Scheduling Methods
Makespan
the time it takes from the start of the first job until the end of the last job
Scheduling Sequence
- Earliest Due Date - order jobs by due date
- Shortest Processing Time - order jobs by processing time
- Critical Ratio - divide time remaining until due date by time left on the machine, order by smallest critical ratio
Johnson’s Optimal Rule for Two Machines
- Find the shortest processsing times and arbitrarily break ties
- If the shortest processing time is on Machine A, schedule immediately. If the shortest processing time is on Machine B, schedule it as late as possible.
- Eliminate the last job scheduled on the list and repeat step 1-2.
Inventory Management and Control
Economic Order Quantity
$$Q^*=\sqrt{\frac{2C_pD}{h}R} \\ R = \frac{1}{1-\frac{D}{P}},\quad\textrm{R=1, when replenishment is instaneous} \\ D=\textrm{demand},P=\textrm{production rate},C_p=\textrm{cost per order},h=\textrm{holding cost}$$
Economic Manufacturing Quantity
Use the equation above with R not equal to 1.
With shortage costs
$$Q^* = \sqrt{\frac{2C_pD}{h}R\big(\frac{h+z}{z}\big)} \\ z = \textrm{shortage cost}$$
$$M^*=\sqrt{\frac{2C_pD(1-\frac{D}{P})h}{z(h+z)}} \\ M = \textrm{allowed shortage}$$
Carrying Cost
$$C_T=\frac{hQ}{2}\big(1-\frac{D}{P}\big)+CD+C_p\frac{D}{Q}$$
Probabilistic Inventory and Production Models
$$F_D(x=y^*)\ge\frac{p-c}{p+h} \\ F_D = \textrm{CDF} \\ x = \textrm{units on hand}, y^*=\textrm{optimal order quantity}, p = \textrm{loss of potential revenue},\\ h = \textrm{loss in value from holding}, c = \textrm{unit acquisition cost}$$
Distribution Methods
Transhipment:
The intermediary storage
Transportation Problem
$$min \quad \sum_{i=1}^m \sum_{j=1}^nx_{ij}c_{ij} \\ \sum_{j=1}^nx_{ij}=s_i, n = 1, 2, ..., m \\ \sum_{i=1}^mx_{ij}=d_j, m = 1, 2, ..., n$$
Storage and Warehousing Methods
- Dedicated Storage
- easy to retrieve items
- Sum of maximum of each product
- Random Storage
- more efficient use of space
- Maximum of the sums of all products
Transportation Modes
- Variable Path
- truck, vehicle anything that does not have one fixed path
- versatility
- Fixed Path
- conveyor
- tied to one path
Assignment Problem
Hungarian Procedure:
- Subtract the minimum of the row from all elements in the row
- Substract the minimum of the column from all elements in the columns
- Try to make a valid assignment using the zero elements, if all assigments cannot be made proceed to next step
- Cover all zeroes with the minimal number of lines
- From each uncovered element subtract the minimum of the uncovered y, add y to each intersection element. Go to step 3.
- Transfer the assignment plan to the original cost table.
Work Design
Controls
An administrative control are training, policies, or procedures.
An engineering control is a physical modification to mitigate hazards.
Noise Dose
Dose
$$D=100*\big(\frac{C_1}{T_1}+\frac{C_2}{T_2}+...+\frac{C_n}{T_n}\big)\le 100$$
Time Weighted Average
$$TWA=16.61log_{10}\big(\frac{D}{100}\big)+90$$
Exposure
Time Weighted Concentration
$$TWA=\frac{\sum_{i=1}^nC_iT_i}{\sum_{i=1}^nT_i}$$
Taylor Tool Life
$$VT^n=C \\ V = \textrm{speed surface feet per minute} \\ T = \textrm{tool life in minutes} \\ C,n = \textrm{constants that depend on material and tool}$$
Work Sampling
$$D = Z_{\alpha/2}\sqrt{\frac{p(-1-p)}{n}}, \quad Z_{\alpha/2}\sqrt{\frac{1-p}{pn}} \\ p = \textrm{proportion of observed time} \\ D = \textrm{absolute error} \\ R = \textrm{relative error} = \frac{D}{p} \\ n = \textrm{sample size}$$
Sample Size
$$E = \frac{z_{\frac{\alpha}{2}}\sigma}{\sqrt{n}}$$
$$n = \bigg( \frac{z_{\frac{\alpha}{2}}\sigma}{E} \bigg)^2$$
Critical Path Method
$$T = \sum_{(i,j)\in CP}d_{ij}$$
Standard Time
$$\textrm{Observed Time * Pace Rating * (1 + personal time allowance) * (1 + fatigue allowance)}$$
Recommended Weight Limit
Units are pounds and inches.
$$RWL = 51\cdot (\frac{10}{H})\cdot (1-.0075|V-30|)\cdot (.82+\frac{1.8}{D})\cdot (1-.0032A)\cdot FM \cdot CM \\ \textrm{H = horizontal location of the load forward of the midpoint of the ankles} \\ \textrm{V = vertical location of the load} \\ \textrm{D = Vertical travel distance between the origin and the destination} \\ \textrm{A=angle of asymmetry between hands and feet} \\ \textrm{FM = frequency multiplier (from table)} \\ \textrm{CM = coupling mulitiplier (from table)}$$
Learning Curve
$$y=kx^n, n=\frac{log_{e}\phi}{log_{e}(2)} \\ \phi=\textrm{learning ratio}=\frac{T(2N)}{T(N)}, \textrm{T(N) = time to produce Nth unit} \\ \textrm{y= time to produce xth unit, k = time to produce first unit, x = cumulative number of units produced}$$
Total Learning Time:
$$T=k\frac{[(x_2+\frac{1}{2})^{n+1}-(x_1+\frac{1}{2})^{n+1}]}{n+1}$$
Remission Line:
$$y=k+\frac{(k-s)(x-1)}{1-x_s}$$
Quality Control
Statistical Process Control
X & R-Chart
$$UCL = D_4\bar{R} \\ CL = \bar{R} \\ LCL = D_3\bar{R}$$
$$UCL = \bar{\bar{X}}+A_2\bar{R} \\ CL = \bar{\bar{X}} \\ LCL = \bar{\bar{X}}-A_2\bar{R}$$
X & S-Chart
$$UCL=B_4\bar{S} \\ CL = \bar{X} \\ LCL = B_3\bar{S}$$
$$UCL = \bar{\bar{X}} + A_3\bar{S} \\ CL = \bar{\bar{X}} \\ LCL = \bar{\bar{X}}-A_3\bar{S}$$
P-Chart
$$UCL = \bar{p}+3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \\ CL = \bar{p} \\ LCL = \bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$
C-Chart
$$UCL = \bar{c}+3\sqrt{\bar{c}} \\ CL = \bar{c} \\ LCL = \bar{c}-3\sqrt{\bar{c}}$$
Tests for Out of Control
- A single point falls outside three sigma control limits
- Two out of three successive points fall on the same side of and more than two sigma units from the center line
- Four out of five successive points fall on the same side of and more than one sigma unit from the center line
- Eight successive points fall on the same side of the center line
Control vs. Capability
In control if it is within natural variability
Is capable if it is entirely within specification
Process Capability
Actual Capability:
$$C_{pk}=min\bigg(\frac{\mu-LSL}{3\sigma},\frac{USL-\mu}{3\sigma}\bigg)$$
Potential Capability:
$$C_p = \frac{USL-LSL}{6\sigma}$$
Reliability Analysis
Series:
$$R = \prod_{i=1}^n P_i$$
Parallel:
$$R = 1-\prod_{i=1}^n (1-P_i) $$
Hazard Function
$$h(x)=\frac{f(x)}{R(x)} \\ f(x) \text{ = density function, } R(x) \text{ = survival function}$$
Exponential
$$h(x)=\lambda$$
Weibull
$$h(x)=\frac{\beta}{\alpha}\big(\frac{x}{\alpha}\big)^{\beta-1}$$
Mean Time to Failure
$$\frac{1}{\lambda}, \\ \lambda \text{ = constant failure rate}$$
Six Sigma
`\(\sigma\)` | Defects per Million |
---|---|
1.00 | 158655.254 |
1.50 | 66807.201 |
2.00 | 22750.132 |
2.50 | 6209.665 |
3.00 | 1349.898 |
3.50 | 232.629 |
4.00 | 31.671 |
4.50 | 3.398 |
5.00 | 0.287 |
5.50 | 0.019 |
6.00 | 0.001 |
Statistics
Normal Distribution
z-score
$$z=\frac{x-\mu}{\sigma}$$
Confidence Interval
$$\bar{x}\pm\frac{z_{\alpha/2} \sigma}{\sqrt{n}}$$
Two-means comparison:
$$z_0=\frac{\bar{x}_1-\bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}$$
student-t Distribution
t-score:
$$t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$$
Confidence Interval
$$\bar{x}\pm\frac{t_{\alpha/2,n-1}s}{\sqrt{n}}$$
Two-means comparison:
$$t_0=\frac{\bar{x}_1-\bar{x}_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}$$
df for Two Sample t-test:
$$df=\frac{\big(\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}\big)^2}{\frac{(\frac{s_1^2}{n_1})^2}{n_1-1}+{\frac{(\frac{s_1^2}{n_1})^2}{n_1-1}}}$$
Paired t-test:
$$t_0 = \frac{\bar{d}-0}{\frac{s_d}{\sqrt{n}}}$$
Hypothesis Testing
`\(H_0 \text{ is true}\)` | `\(H_0 \text{ is false}\)` | |
---|---|---|
`\(\text{Accept } H_0\)` | Correct | Type II Error |
`\(\text{Reject } H_0\)` | Type I Error | Correct |
Chi-Squared Goodness of Fit
$$\chi^2=\sum_{j=1}^k\frac{(O_j-E_j)^2}{E_j}$$
Linear Regression
$$SSR=\sum_{i=1}^n(\hat{y}_i-\bar{y})^2$$
$$SSE = \sum_{i=1}^n(y_i-\hat{y}_i)^2$$
$$SST = \sum_{i=1}^n(y_i-\bar{y})^2$$
$$R^2=\frac{SSR}{SST} = 1-\frac{SSE}{SST}$$
ANOVA
$$SSA+SSE=SST$$
One-Way
Given Treatment A:
$$SSA+SSE=SST$$
SS | df | MS | F |
---|---|---|---|
SSA | a-1 | SSA/dfA | MSA/MSE |
SSE | a(n-1) | SSE/dfE | |
SST | an-1 |
Two-Way
Given treatment factors A & B:
$$SST=SSA+SSB+SSAB+SSE$$
SS | df | MS | F |
---|---|---|---|
SSA | a-1 | SSA/dfA | MSA/MSE |
SSB | b-1 | SSB/dfB | MSB/MSE |
SSAB | (a-1)(b-1) | SSAB/dfAB | MSAB/MSE |
SSE | ab(n-1) | SSE/dfE | |
SST | abn-1 |
Bayesian Analysis
Bayes' Theorem
$$P(A|B)=\frac{P(B|A)P(A)}{P(B)}=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A^\prime)P(A^\prime)}$$
Distributions
Distribution | pmf | cdf | mean | variance | parameters |
---|---|---|---|---|---|
Binomial | `\(\binom{n}{x}p^x(1-p)^{n-x}\)` | `\(\sum_{i=0}^{\lfloor x \rfloor}\binom{n}{i}p^i(1-p)^{n-i}\)` | `\(np\)` | `\(np(1-p)\)` | `\(\text{n = number of trials} \\ \text{p = success probability}\)` |
Discrete Uniform | `\(\frac{1}{b-a+1}\)` | `\(\frac{\lfloor x \rfloor - a + 1}{b-a+1}\)` | `\(\frac{a+b}{2}\)` | `\(\frac{(b-a+1)^2-1}{12}\)` | `\(\text{a = minimum} \\ \text{b = maximum}\)` |
Poisson | `\(\frac{\lambda^x e^{-\lambda}}{x!}\)` | `\(e^{-\lambda}\sum_{i=0}^{\lfloor x \rfloor}\frac{\lambda^i}{i!}\)` | `\(\lambda\)` | `\(\lambda\)` | `\(\lambda\text{ = rate}\)` |
Geometric | `\(p(1-p)^{x}\)` | `\(1-(1-p)^{x+1}\)` | `\(\frac{1-p}{p}\)` | `\(\frac{1-p}{p^2}\)` | `\(\text{k = number of trials} \\ \text{p = success probability}\)` |
Negative Binomial | `\(\binom{k+x-1}{x}p^k(1-p)^x\)` | `\(-\)` | `\(\frac{k(1-p)}{p}\)` | `\(\frac{k(1-p)}{p^2}\)` | `\(\text{k = number of successes}\\ \text{p = success probability}\)` |
Distribution | cdf | mean | variance | parameters | |
---|---|---|---|---|---|
Uniform | `\(\frac{1}{b-a}\)` | `\(\frac{x-a}{b-a}\)` | `\(\frac{a+b}{2}\)` | `\(\frac{(b-a)^2}{12}\)` | `\(\text{a = minimum} \\ \text{b = maximum}\)` |
Exponential | `\(\lambda e^{-\lambda x}\)` | `\(1-e^{-\lambda x}\)` | `\(\frac{1}{\lambda}\)` | `\(\frac{1}{\lambda^2}\)` | `\(\lambda \text{ = rate}\)` |
Normal | `\(\frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\)` | `\(\frac{1}{2}\big[1+erf\big(\frac{x-\mu}{\sigma\sqrt{2}}\big)\big]\)` | `\(\mu\)` | `\(\sigma^2\)` | `\(\mu \text{ = mean} \\ \sigma^2 \text{ = variance}\)` |
PERT beta | `\(-\)` | `\(-\)` | `\(\frac{a+4m+b}{6}\)` | `\(\frac{(b-a)^2}{36}\)` | `\(\text{a = 1st percentile} \\ \text{b = 99th percentile} \\ \text{m = mode}\)` |
Triangular | $\begin{cases} \frac{(x-a)^2}{(b-a)(c-a)},\quad a\le x\le c \\ 1-\frac{(b-x)^2}{(b-a)(b-c)},\quad c $\begin{cases} \frac{(x-a)^2}{(b-a)(c-a)},\quad a\le x\le c \\ 1-\frac{(b-x)^2}{(b-a)(b-c)}, \quad c | `\(\frac{a+b+c}{3}\)` | `\(\frac{a^2+m^2+b^2-ca-ab-cb}{18}\)` | `\(\text{a = minimum} \\ \text{b = maximum} \\ \text{c = mode}\)` | |
Gamma | `\(\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}\)` | `\(\frac{1}{\Gamma(\alpha)}\gamma(\alpha,\beta x)\)` | `\(\alpha\beta\)` | `\(\alpha\beta^2\)` | `\(\alpha \text{ = shape} \\ \beta \text{ = scale}\)` |
Weibull | `\(\frac{\beta}{\alpha}\binom{x}{\alpha}^{\beta-1}e^{-{(\frac{x}{\alpha}})^\beta}\)` | `\(1-e^{-(\frac{x}{\alpha})^\beta}\)` | `\(-\)` | `\(-\)` | `\(-\)` |
Lognormal | `\(\frac{1}{x\sigma\sqrt{2\pi}}e^{\frac{(ln x-\mu)^2}{2\sigma^2}}\)` | `\(\frac{1}{2}+ \frac{1}{2} erf \big[ \frac{ln x-\mu}{\sigma\sqrt{2}}\big]\)` | `\(e^{\mu+\frac{\sigma^2}{2}}\)` | `\([e^{\sigma^2}-1] e^{2\mu+\sigma^2}\)` | `\(\mu\text{ = mean} \\ \sigma^2 \text{ = variance}\)` |
\(\text{Factors for Control Charts}\)
`\(n\)` | `\(A\)` | `\(A_2\)` | `\(A_3\)` | `\(c_4\)` | `\(B_3\)` | `\(B_4\)` | `\(B_5\)` | `\(B_6\)` | `\(d_2\)` | `\(d_2^{-1}\)` | `\(d_3\)` | `\(D_1\)` | `\(D_2\)` | `\(D_3\)` | `\(D_4\)` |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2.121 | 1.880 | 2.659 | 0.798 | 0.000 | 3.267 | 0.000 | 2.606 | 1.128 | 0.886 | 0.853 | 0.000 | 3.686 | 0.000 | 3.267 |
3 | 1.732 | 1.023 | 1.954 | 0.886 | 0.000 | 2.568 | 0.000 | 2.276 | 1.693 | 0.591 | 0.888 | 0.000 | 4.358 | 0.000 | 2.575 |
4 | 1.500 | 0.729 | 1.628 | 0.921 | 0.000 | 2.266 | 0.000 | 2.088 | 2.059 | 0.486 | 0.880 | 0.000 | 4.698 | 0.000 | 2.282 |
5 | 1.342 | 0.577 | 1.427 | 0.940 | 0.000 | 2.089 | 0.000 | 1.964 | 2.326 | 0.430 | 0.864 | 0.000 | 4.918 | 0.000 | 2.114 |
6 | 1.225 | 0.483 | 1.287 | 0.952 | 0.030 | 1.970 | 0.029 | 1.874 | 2.534 | 0.395 | 0.848 | 0.000 | 5.079 | 0.000 | 2.004 |
7 | 1.134 | 0.419 | 1.182 | 0.959 | 0.118 | 1.882 | 0.113 | 1.806 | 2.704 | 0.370 | 0.833 | 0.205 | 5.204 | 0.076 | 1.924 |
8 | 1.061 | 0.373 | 1.099 | 0.965 | 0.185 | 1.815 | 0.179 | 1.751 | 2.847 | 0.351 | 0.820 | 0.388 | 5.307 | 0.136 | 1.864 |
9 | 1.000 | 0.337 | 1.032 | 0.969 | 0.239 | 1.761 | 0.232 | 1.707 | 2.970 | 0.337 | 0.808 | 0.547 | 5.394 | 0.184 | 1.816 |
10 | 0.949 | 0.308 | 0.975 | 0.973 | 0.284 | 1.716 | 0.276 | 1.669 | 3.078 | 0.325 | 0.797 | 0.686 | 5.469 | 0.223 | 1.777 |
11 | 0.905 | 0.285 | 0.927 | 0.975 | 0.321 | 1.679 | 0.313 | 1.637 | 3.173 | 0.315 | 0.787 | 0.811 | 5.535 | 0.256 | 1.744 |
12 | 0.866 | 0.266 | 0.886 | 0.978 | 0.354 | 1.646 | 0.346 | 1.610 | 3.258 | 0.307 | 0.778 | 0.923 | 5.594 | 0.283 | 1.717 |
13 | 0.832 | 0.249 | 0.850 | 0.979 | 0.382 | 1.618 | 0.374 | 1.585 | 3.336 | 0.300 | 0.770 | 1.025 | 5.647 | 0.307 | 1.693 |
14 | 0.802 | 0.235 | 0.817 | 0.981 | 0.406 | 1.594 | 0.399 | 1.563 | 3.407 | 0.293 | 0.763 | 1.118 | 5.696 | 0.328 | 1.672 |
15 | 0.775 | 0.223 | 0.789 | 0.982 | 0.428 | 1.572 | 0.421 | 1.544 | 3.472 | 0.288 | 0.756 | 1.203 | 5.740 | 0.347 | 1.653 |
16 | 0.750 | 0.212 | 0.763 | 0.984 | 0.448 | 1.552 | 0.440 | 1.526 | 3.532 | 0.283 | 0.750 | 1.282 | 5.782 | 0.363 | 1.637 |
17 | 0.728 | 0.203 | 0.739 | 0.985 | 0.466 | 1.534 | 0.458 | 1.511 | 3.588 | 0.279 | 0.744 | 1.356 | 5.820 | 0.378 | 1.622 |
18 | 0.707 | 0.194 | 0.718 | 0.985 | 0.482 | 1.518 | 0.475 | 1.496 | 3.640 | 0.275 | 0.739 | 1.424 | 5.856 | 0.391 | 1.609 |
19 | 0.688 | 0.187 | 0.698 | 0.986 | 0.497 | 1.503 | 0.490 | 1.483 | 3.689 | 0.271 | 0.733 | 1.489 | 5.889 | 0.404 | 1.596 |
20 | 0.671 | 0.180 | 0.680 | 0.987 | 0.510 | 1.490 | 0.504 | 1.470 | 3.735 | 0.268 | 0.729 | 1.549 | 5.921 | 0.415 | 1.585 |
21 | 0.655 | 0.173 | 0.663 | 0.988 | 0.523 | 1.477 | 0.516 | 1.459 | 3.778 | 0.265 | 0.724 | 1.606 | 5.951 | 0.425 | 1.575 |
22 | 0.640 | 0.167 | 0.647 | 0.988 | 0.534 | 1.466 | 0.528 | 1.448 | 3.819 | 0.262 | 0.720 | 1.660 | 5.979 | 0.435 | 1.565 |
23 | 0.626 | 0.162 | 0.633 | 0.989 | 0.545 | 1.455 | 0.539 | 1.438 | 3.858 | 0.259 | 0.716 | 1.711 | 6.006 | 0.443 | 1.557 |
24 | 0.612 | 0.157 | 0.619 | 0.989 | 0.555 | 1.445 | 0.549 | 1.429 | 3.895 | 0.257 | 0.712 | 1.759 | 6.032 | 0.452 | 1.548 |
25 | 0.600 | 0.153 | 0.606 | 0.990 | 0.565 | 1.435 | 0.559 | 1.420 | 3.931 | 0.254 | 0.708 | 1.805 | 6.056 | 0.459 | 1.541 |
\(\text{Normal Distribution}\)
z | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
\(t \text{ Distribution}\)
`\(v \big\backslash \alpha\)` | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 |
---|---|---|---|---|---|
1 | 3.0777 | 6.3138 | 12.7062 | 31.8205 | 63.6567 |
2 | 1.8856 | 2.9200 | 4.3027 | 6.9646 | 9.9248 |
3 | 1.6377 | 2.3534 | 3.1824 | 4.5407 | 5.8409 |
4 | 1.5332 | 2.1318 | 2.7764 | 3.7469 | 4.6041 |
5 | 1.4759 | 2.0150 | 2.5706 | 3.3649 | 4.0321 |
6 | 1.4398 | 1.9432 | 2.4469 | 3.1427 | 3.7074 |
7 | 1.4149 | 1.8946 | 2.3646 | 2.9980 | 3.4995 |
8 | 1.3968 | 1.8595 | 2.3060 | 2.8965 | 3.3554 |
9 | 1.3830 | 1.8331 | 2.2622 | 2.8214 | 3.2498 |
10 | 1.3722 | 1.8125 | 2.2281 | 2.7638 | 3.1693 |
11 | 1.3634 | 1.7959 | 2.2010 | 2.7181 | 3.1058 |
12 | 1.3562 | 1.7823 | 2.1788 | 2.6810 | 3.0545 |
13 | 1.3502 | 1.7709 | 2.1604 | 2.6503 | 3.0123 |
14 | 1.3450 | 1.7613 | 2.1448 | 2.6245 | 2.9768 |
15 | 1.3406 | 1.7531 | 2.1314 | 2.6025 | 2.9467 |
16 | 1.3368 | 1.7459 | 2.1199 | 2.5835 | 2.9208 |
17 | 1.3334 | 1.7396 | 2.1098 | 2.5669 | 2.8982 |
18 | 1.3304 | 1.7341 | 2.1009 | 2.5524 | 2.8784 |
19 | 1.3277 | 1.7291 | 2.0930 | 2.5395 | 2.8609 |
20 | 1.3253 | 1.7247 | 2.0860 | 2.5280 | 2.8453 |
21 | 1.3232 | 1.7207 | 2.0796 | 2.5176 | 2.8314 |
22 | 1.3212 | 1.7171 | 2.0739 | 2.5083 | 2.8188 |
23 | 1.3195 | 1.7139 | 2.0687 | 2.4999 | 2.8073 |
24 | 1.3178 | 1.7109 | 2.0639 | 2.4922 | 2.7969 |
25 | 1.3163 | 1.7081 | 2.0595 | 2.4851 | 2.7874 |
26 | 1.3150 | 1.7056 | 2.0555 | 2.4786 | 2.7787 |
27 | 1.3137 | 1.7033 | 2.0518 | 2.4727 | 2.7707 |
28 | 1.3125 | 1.7011 | 2.0484 | 2.4671 | 2.7633 |
29 | 1.3114 | 1.6991 | 2.0452 | 2.4620 | 2.7564 |
30 | 1.3104 | 1.6973 | 2.0423 | 2.4573 | 2.7500 |
Inf | 1.2816 | 1.6449 | 1.9600 | 2.3263 | 2.5758 |
\(\chi^2 \text{ Distribution}\)
`\(v \big\backslash \alpha\)` | 0.995 | 0.99 | 0.975 | 0.95 | 0.9 | 0.75 | 0.5 | 0.25 | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.10 | 0.45 | 1.32 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 | 10.83 |
2 | 0.01 | 0.02 | 0.05 | 0.10 | 0.21 | 0.58 | 1.39 | 2.77 | 4.61 | 5.99 | 7.38 | 9.21 | 10.60 | 13.82 |
3 | 0.07 | 0.11 | 0.22 | 0.35 | 0.58 | 1.21 | 2.37 | 4.11 | 6.25 | 7.81 | 9.35 | 11.34 | 12.84 | 16.27 |
4 | 0.21 | 0.30 | 0.48 | 0.71 | 1.06 | 1.92 | 3.36 | 5.39 | 7.78 | 9.49 | 11.14 | 13.28 | 14.86 | 18.47 |
5 | 0.41 | 0.55 | 0.83 | 1.15 | 1.61 | 2.67 | 4.35 | 6.63 | 9.24 | 11.07 | 12.83 | 15.09 | 16.75 | 20.52 |
6 | 0.68 | 0.87 | 1.24 | 1.64 | 2.20 | 3.45 | 5.35 | 7.84 | 10.64 | 12.59 | 14.45 | 16.81 | 18.55 | 22.46 |
7 | 0.99 | 1.24 | 1.69 | 2.17 | 2.83 | 4.25 | 6.35 | 9.04 | 12.02 | 14.07 | 16.01 | 18.48 | 20.28 | 24.32 |
8 | 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 5.07 | 7.34 | 10.22 | 13.36 | 15.51 | 17.53 | 20.09 | 21.95 | 26.12 |
9 | 1.73 | 2.09 | 2.70 | 3.33 | 4.17 | 5.90 | 8.34 | 11.39 | 14.68 | 16.92 | 19.02 | 21.67 | 23.59 | 27.88 |
10 | 2.16 | 2.56 | 3.25 | 3.94 | 4.87 | 6.74 | 9.34 | 12.55 | 15.99 | 18.31 | 20.48 | 23.21 | 25.19 | 29.59 |
11 | 2.60 | 3.05 | 3.82 | 4.57 | 5.58 | 7.58 | 10.34 | 13.70 | 17.28 | 19.68 | 21.92 | 24.72 | 26.76 | 31.26 |
12 | 3.07 | 3.57 | 4.40 | 5.23 | 6.30 | 8.44 | 11.34 | 14.85 | 18.55 | 21.03 | 23.34 | 26.22 | 28.30 | 32.91 |
13 | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 9.30 | 12.34 | 15.98 | 19.81 | 22.36 | 24.74 | 27.69 | 29.82 | 34.53 |
14 | 4.07 | 4.66 | 5.63 | 6.57 | 7.79 | 10.17 | 13.34 | 17.12 | 21.06 | 23.68 | 26.12 | 29.14 | 31.32 | 36.12 |
15 | 4.60 | 5.23 | 6.26 | 7.26 | 8.55 | 11.04 | 14.34 | 18.25 | 22.31 | 25.00 | 27.49 | 30.58 | 32.80 | 37.70 |
16 | 5.14 | 5.81 | 6.91 | 7.96 | 9.31 | 11.91 | 15.34 | 19.37 | 23.54 | 26.30 | 28.85 | 32.00 | 34.27 | 39.25 |
17 | 5.70 | 6.41 | 7.56 | 8.67 | 10.09 | 12.79 | 16.34 | 20.49 | 24.77 | 27.59 | 30.19 | 33.41 | 35.72 | 40.79 |
18 | 6.26 | 7.01 | 8.23 | 9.39 | 10.86 | 13.68 | 17.34 | 21.60 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16 | 42.31 |
19 | 6.84 | 7.63 | 8.91 | 10.12 | 11.65 | 14.56 | 18.34 | 22.72 | 27.20 | 30.14 | 32.85 | 36.19 | 38.58 | 43.82 |
20 | 7.43 | 8.26 | 9.59 | 10.85 | 12.44 | 15.45 | 19.34 | 23.83 | 28.41 | 31.41 | 34.17 | 37.57 | 40.00 | 45.31 |
21 | 8.03 | 8.90 | 10.28 | 11.59 | 13.24 | 16.34 | 20.34 | 24.93 | 29.62 | 32.67 | 35.48 | 38.93 | 41.40 | 46.80 |
22 | 8.64 | 9.54 | 10.98 | 12.34 | 14.04 | 17.24 | 21.34 | 26.04 | 30.81 | 33.92 | 36.78 | 40.29 | 42.80 | 48.27 |
23 | 9.26 | 10.20 | 11.69 | 13.09 | 14.85 | 18.14 | 22.34 | 27.14 | 32.01 | 35.17 | 38.08 | 41.64 | 44.18 | 49.73 |
24 | 9.89 | 10.86 | 12.40 | 13.85 | 15.66 | 19.04 | 23.34 | 28.24 | 33.20 | 36.42 | 39.36 | 42.98 | 45.56 | 51.18 |
25 | 10.52 | 11.52 | 13.12 | 14.61 | 16.47 | 19.94 | 24.34 | 29.34 | 34.38 | 37.65 | 40.65 | 44.31 | 46.93 | 52.62 |
30 | 13.79 | 14.95 | 16.79 | 18.49 | 20.60 | 24.48 | 29.34 | 34.80 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67 | 59.70 |
40 | 20.71 | 22.16 | 24.43 | 26.51 | 29.05 | 33.66 | 39.34 | 45.62 | 51.81 | 55.76 | 59.34 | 63.69 | 66.77 | 73.40 |
50 | 27.99 | 29.71 | 32.36 | 34.76 | 37.69 | 42.94 | 49.33 | 56.33 | 63.17 | 67.50 | 71.42 | 76.15 | 79.49 | 86.66 |
60 | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 52.29 | 59.33 | 66.98 | 74.40 | 79.08 | 83.30 | 88.38 | 91.95 | 99.61 |
70 | 43.28 | 45.44 | 48.76 | 51.74 | 55.33 | 61.70 | 69.33 | 77.58 | 85.53 | 90.53 | 95.02 | 100.43 | 104.21 | 112.32 |
80 | 51.17 | 53.54 | 57.15 | 60.39 | 64.28 | 71.14 | 79.33 | 88.13 | 96.58 | 101.88 | 106.63 | 112.33 | 116.32 | 124.84 |
90 | 59.20 | 61.75 | 65.65 | 69.13 | 73.29 | 80.62 | 89.33 | 98.65 | 107.57 | 113.15 | 118.14 | 124.12 | 128.30 | 137.21 |
100 | 67.33 | 70.06 | 74.22 | 77.93 | 82.36 | 90.13 | 99.33 | 109.14 | 118.50 | 124.34 | 129.56 | 135.81 | 140.17 | 149.45 |
\(F(v_1, v_2) \text{ Distribution}\)
`\(v_2 \big\backslash v_1\)` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | `\(\infty\)` |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 243.91 | 245.95 | 248.01 | 249.05 | 250.10 | 251.14 | 252.20 | 253.25 | 254.31 |
2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.41 | 19.43 | 19.45 | 19.45 | 19.46 | 19.47 | 19.48 | 19.49 | 19.50 |
3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.74 | 8.70 | 8.66 | 8.64 | 8.62 | 8.59 | 8.57 | 8.55 | 8.53 |
4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.91 | 5.86 | 5.80 | 5.77 | 5.75 | 5.72 | 5.69 | 5.66 | 5.63 |
5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.68 | 4.62 | 4.56 | 4.53 | 4.50 | 4.46 | 4.43 | 4.40 | 4.36 |
6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.00 | 3.94 | 3.87 | 3.84 | 3.81 | 3.77 | 3.74 | 3.70 | 3.67 |
7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.57 | 3.51 | 3.44 | 3.41 | 3.38 | 3.34 | 3.30 | 3.27 | 3.23 |
8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.28 | 3.22 | 3.15 | 3.12 | 3.08 | 3.04 | 3.01 | 2.97 | 2.93 |
9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.07 | 3.01 | 2.94 | 2.90 | 2.86 | 2.83 | 2.79 | 2.75 | 2.71 |
10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.91 | 2.85 | 2.77 | 2.74 | 2.70 | 2.66 | 2.62 | 2.58 | 2.54 |
12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.69 | 2.62 | 2.54 | 2.51 | 2.47 | 2.43 | 2.38 | 2.34 | 2.30 |
15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.48 | 2.40 | 2.33 | 2.29 | 2.25 | 2.20 | 2.16 | 2.11 | 2.07 |
20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.28 | 2.20 | 2.12 | 2.08 | 2.04 | 1.99 | 1.95 | 1.90 | 1.84 |
24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 | 2.18 | 2.11 | 2.03 | 1.98 | 1.94 | 1.89 | 1.84 | 1.79 | 1.73 |
30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 2.09 | 2.01 | 1.93 | 1.89 | 1.84 | 1.79 | 1.74 | 1.68 | 1.62 |
40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 2.00 | 1.92 | 1.84 | 1.79 | 1.74 | 1.69 | 1.64 | 1.58 | 1.51 |
60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.92 | 1.84 | 1.75 | 1.70 | 1.65 | 1.59 | 1.53 | 1.47 | 1.39 |
120 | 3.92 | 3.07 | 2.68 | 2.45 | 2.29 | 2.18 | 2.09 | 2.02 | 1.96 | 1.91 | 1.83 | 1.75 | 1.66 | 1.61 | 1.55 | 1.50 | 1.43 | 1.35 | 1.25 |
Inf | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 2.01 | 1.94 | 1.88 | 1.83 | 1.75 | 1.67 | 1.57 | 1.52 | 1.46 | 1.39 | 1.32 | 1.22 | 1.00 |
`\(v_2 \big\backslash v_1\)` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | `\(\infty\)` |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4052 | 5000 | 5403 | 5625 | 5764 | 5859 | 5928 | 5981 | 6022 | 6056 | 6106 | 6157 | 6209 | 6235 | 6261 | 6287 | 6313 | 6339 | 6366 |
2 | 98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 | 99.36 | 99.37 | 99.39 | 99.40 | 99.42 | 99.43 | 99.45 | 99.46 | 99.47 | 99.47 | 99.48 | 99.49 | 99.50 |
3 | 34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 | 27.67 | 27.49 | 27.35 | 27.23 | 27.05 | 26.87 | 26.69 | 26.60 | 26.50 | 26.41 | 26.32 | 26.22 | 26.13 |
4 | 21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 | 14.98 | 14.80 | 14.66 | 14.55 | 14.37 | 14.20 | 14.02 | 13.93 | 13.84 | 13.75 | 13.65 | 13.56 | 13.46 |
5 | 16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 | 10.46 | 10.29 | 10.16 | 10.05 | 9.89 | 9.72 | 9.55 | 9.47 | 9.38 | 9.29 | 9.20 | 9.11 | 9.02 |
6 | 13.75 | 10.92 | 9.78 | 9.15 | 8.75 | 8.47 | 8.26 | 8.10 | 7.98 | 7.87 | 7.72 | 7.56 | 7.40 | 7.31 | 7.23 | 7.14 | 7.06 | 6.97 | 6.88 |
7 | 12.25 | 9.55 | 8.45 | 7.85 | 7.46 | 7.19 | 6.99 | 6.84 | 6.72 | 6.62 | 6.47 | 6.31 | 6.16 | 6.07 | 5.99 | 5.91 | 5.82 | 5.74 | 5.65 |
8 | 11.26 | 8.65 | 7.59 | 7.01 | 6.63 | 6.37 | 6.18 | 6.03 | 5.91 | 5.81 | 5.67 | 5.52 | 5.36 | 5.28 | 5.20 | 5.12 | 5.03 | 4.95 | 4.86 |
9 | 10.56 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.61 | 5.47 | 5.35 | 5.26 | 5.11 | 4.96 | 4.81 | 4.73 | 4.65 | 4.57 | 4.48 | 4.40 | 4.31 |
10 | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 | 4.94 | 4.85 | 4.71 | 4.56 | 4.41 | 4.33 | 4.25 | 4.17 | 4.08 | 4.00 | 3.91 |
12 | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 | 4.39 | 4.30 | 4.16 | 4.01 | 3.86 | 3.78 | 3.70 | 3.62 | 3.54 | 3.45 | 3.36 |
15 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.89 | 3.80 | 3.67 | 3.52 | 3.37 | 3.29 | 3.21 | 3.13 | 3.05 | 2.96 | 2.87 |
20 | 8.10 | 5.85 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 | 3.46 | 3.37 | 3.23 | 3.09 | 2.94 | 2.86 | 2.78 | 2.69 | 2.61 | 2.52 | 2.42 |
24 | 7.82 | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 | 3.26 | 3.17 | 3.03 | 2.89 | 2.74 | 2.66 | 2.58 | 2.49 | 2.40 | 2.31 | 2.21 |
30 | 7.56 | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 | 3.07 | 2.98 | 2.84 | 2.70 | 2.55 | 2.47 | 2.39 | 2.30 | 2.21 | 2.11 | 2.01 |
40 | 7.31 | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.89 | 2.80 | 2.66 | 2.52 | 2.37 | 2.29 | 2.20 | 2.11 | 2.02 | 1.92 | 1.80 |
60 | 7.08 | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 | 2.63 | 2.50 | 2.35 | 2.20 | 2.12 | 2.03 | 1.94 | 1.84 | 1.73 | 1.60 |
120 | 6.85 | 4.79 | 3.95 | 3.48 | 3.17 | 2.96 | 2.79 | 2.66 | 2.56 | 2.47 | 2.34 | 2.19 | 2.03 | 1.95 | 1.86 | 1.76 | 1.66 | 1.53 | 1.38 |
Inf | 6.63 | 4.61 | 3.78 | 3.32 | 3.02 | 2.80 | 2.64 | 2.51 | 2.41 | 2.32 | 2.18 | 2.04 | 1.88 | 1.79 | 1.70 | 1.59 | 1.47 | 1.32 | 1.00 |
References
[[1]]
Krishnamoorthi K (2006). _A First Course in Quality Engineering:
Integrating Statistical and Management Methods of Quality_. Pearson
Prentice Hall. ISBN 9780131472013, <URL:
https://books.google.com/books?id=lPQJAQAAMAAJ>.
[[2]]
Kutner M, Nachtsheim C, Neter J, Li W (2004). _Applied Linear
Statistical Models with Student CD_. McGraw-Hill
Companies,Incorporated. ISBN 9780073108742, <URL:
https://books.google.com/books?id=0Qq-swEACAAJ>.
[[3]]
Sullivan W, Wicks E, Luxhoj J (2006). _Engineering Economy_, number v.
1 series Engineering Economy. Pearson/Prentice Hall. ISBN
9780131486492, <URL: https://books.google.com/books?id=6pcoAQAAMAAJ>.
[[4]]
Gross D, Shortle J, Thompson J, Harris C (2011). _Fundamentals of
Queueing Theory_, series Wiley Series in Probability and Statistics.
Wiley. ISBN 9781118211649, <URL:
https://books.google.com/books?id=K3lQGeCtAJgC>.
[[5]]
Winston W (2003). _Introduction to Probability Models_. Cengage
Learning. ISBN 9780534405786, <URL:
https://books.google.com/books?id=L9yURQAACAAJ>.
[[6]]
Niebel B, Freivalds A (2003). _Methods, Standards, and Work Design_,
series McGraw-Hill series in industrial engineering and management
science. McGraw-Hill. ISBN 9780072468243, <URL:
https://books.google.com/books?id=ApXSoagqrxcC>.
ggplot2 xtable queueing theory RMarkdown R Industrial Engineer Operations Research
4283 Words
2018-05-09 00:00