21 minutes
PE Industrial Engineer Reference Sheet
You contribute to the reference sheet here: https://github.com/tomroh/pe_ise_prep.
Systems Definition, Analysis, and Design
System Analysis and Design Tools
Cause-Effect Diagram (Fishbone)
Pareto Analysis
80% of the items represent 20% of the sales or 20% of the items represent 80% of the cost. This law is a rule of thumb.
Operation Process Chart
The operation process chart only has Operations and Inspections.
Flow Process Chart
The flow process chart forces a more detailed look at a system.
Affinity Diagram
organizes a large number of ideas into their natural relationships
Left Hand Right Hand Chart
Shows when each hand is busy and idle. It is sometimes called a simo chart.
Modeling Techniques
Queueing Models
Effective vs. Offered Load:
Waiting Time Law:
Probability of n arrivals by time t:
Probability of customers in system:
Pollaczek-Khintchine Formula:
C = 1
C = 2
C = 3
Model Verification
A model has been verified if a range of models produce similar results on the same situation
Model Validation
A model has been validated if a range of results produce similar results on the same situation
Bottleneck Analysis
Optimize the process that is the bottleneck, then re-evaulate the bottleneck and repeat.
Facilities Engineering and Planning
People/Equipment Requirements
Material Handling
Euclidian:
To optimize material flow:
When the weighted costs are proportional to the square of the Euclidean distance, it is called the ‘gravity’ problem.
Manhattan:
To optimize flow:
The x value is the median of the location x-coordinates. The y value is the median of the location y-coordinates.
Chebyshev (simultaneous x and y movement)
Relationship Chart
Code | Closeness | Rank |
---|---|---|
A | Absolutely Necessary | 0.95 |
E | Especially Important | 0.85 |
I | Important | 0.7 |
O | Ordinary Closeness | 0.5 |
U | Unimportant | 0 |
X | Not desirable | - |
Supply Chain Logistics
Forecasting Methods
Moving Average
Exponentially Weighted Moving Average
Production Planning Methods
Systems to compute Master Production and Ordering Plan
Material Requirements Planning (MRP)
Manufacturing Resource Planning (MRPII)
Engineering Economics
*Denominator is current value and Numerator is desired conversion
Depreciation
Modified Accelerated Cost Recovery System (MACRS) - See Tables
Production Scheduling Methods
Makespan
the time it takes from the start of the first job until the end of the last job
Scheduling Sequence
- Earliest Due Date - order jobs by due date
- Shortest Processing Time - order jobs by processing time
- Critical Ratio - divide time remaining until due date by time left on the machine, order by smallest critical ratio
Johnson’s Optimal Rule for Two Machines
- Find the shortest processsing times and arbitrarily break ties
- If the shortest processing time is on Machine A, schedule immediately. If the shortest processing time is on Machine B, schedule it as late as possible.
- Eliminate the last job scheduled on the list and repeat step 1-2.
Inventory Management and Control
Economic Order Quantity
Economic Manufacturing Quantity
Use the equation above with R not equal to 1.
With shortage costs
Carrying Cost
Probabilistic Inventory and Production Models
Distribution Methods
Transhipment:
The intermediary storage
Transportation Problem
Storage and Warehousing Methods
- Dedicated Storage
- easy to retrieve items
- Sum of maximum of each product
- Random Storage
- more efficient use of space
- Maximum of the sums of all products
Transportation Modes
- Variable Path
- truck, vehicle anything that does not have one fixed path
- versatility
- Fixed Path
- conveyor
- tied to one path
Assignment Problem
Hungarian Procedure:
- Subtract the minimum of the row from all elements in the row
- Substract the minimum of the column from all elements in the columns
- Try to make a valid assignment using the zero elements, if all assigments cannot be made proceed to next step
- Cover all zeroes with the minimal number of lines
- From each uncovered element subtract the minimum of the uncovered y, add y to each intersection element. Go to step 3.
- Transfer the assignment plan to the original cost table.
Work Design
Controls
An administrative control are training, policies, or procedures.
An engineering control is a physical modification to mitigate hazards.
Noise Dose
Dose
Time Weighted Average
Exposure
Time Weighted Concentration
Taylor Tool Life
Work Sampling
Sample Size
Critical Path Method
Standard Time
Recommended Weight Limit
Units are pounds and inches.
Learning Curve
Total Learning Time:
Remission Line:
Quality Control
Statistical Process Control
X & R-Chart
X & S-Chart
P-Chart
C-Chart
Tests for Out of Control
- A single point falls outside three sigma control limits
- Two out of three successive points fall on the same side of and more than two sigma units from the center line
- Four out of five successive points fall on the same side of and more than one sigma unit from the center line
- Eight successive points fall on the same side of the center line
Control vs. Capability
In control if it is within natural variability
Is capable if it is entirely within specification
Process Capability
Actual Capability:
Potential Capability:
Reliability Analysis
Series:
Parallel:
Hazard Function
Exponential
Weibull
Mean Time to Failure
Six Sigma
` | Defects per Million |
---|---|
1.00 | 158655.254 |
1.50 | 66807.201 |
2.00 | 22750.132 |
2.50 | 6209.665 |
3.00 | 1349.898 |
3.50 | 232.629 |
4.00 | 31.671 |
4.50 | 3.398 |
5.00 | 0.287 |
5.50 | 0.019 |
6.00 | 0.001 |
Statistics
Normal Distribution
z-score
Confidence Interval
Two-means comparison:
student-t Distribution
t-score:
Confidence Interval
Two-means comparison:
df for Two Sample t-test:
Hypothesis Testing
` | ` | |
---|---|---|
` | Correct | Type II Error |
` | Type I Error | Correct |
Chi-Squared Goodness of Fit
Linear Regression
ANOVA
One-Way
Given Treatment A:
SS | df | MS | F |
---|---|---|---|
SSA | a-1 | SSA/dfA | MSA/MSE |
SSE | a(n-1) | SSE/dfE | |
SST | an-1 |
Two-Way
Given treatment factors A & B:
SS | df | MS | F |
---|---|---|---|
SSA | a-1 | SSA/dfA | MSA/MSE |
SSB | b-1 | SSB/dfB | MSB/MSE |
SSAB | (a-1)(b-1) | SSAB/dfAB | MSAB/MSE |
SSE | ab(n-1) | SSE/dfE | |
SST | abn-1 |
Bayesian Analysis
Bayes' Theorem
Distributions
Distribution | pmf | cdf | mean | variance | parameters |
---|---|---|---|---|---|
Binomial | ` | ` | ` | ` | ` |
Discrete Uniform | ` | ` | ` | ` | ` |
Poisson | ` | ` | ` | ` | ` |
Geometric | ` | ` | ` | ` | ` |
Negative Binomial | ` | ` | ` | ` | ` |
Distribution | cdf | mean | variance | parameters | |
---|---|---|---|---|---|
Uniform | ` | ` | ` | ` | ` |
Exponential | ` | ` | ` | ` | ` |
Normal | ` | ` | ` | ` | ` |
PERT beta | ` | ` | ` | ` | ` |
Triangular | $\begin{cases} \frac{(x-a)^2}{(b-a)(c-a)},\quad a\le x\le c \ 1-\frac{(b-x)^2}{(b-a)(b-c)},\quad c | $\begin{cases} \frac{(x-a)^2}{(b-a)(c-a)},\quad a\le x\le c \ 1-\frac{(b-x)^2}{(b-a)(b-c)}, \quad c | ` | ` | ` |
Gamma | ` | ` | ` | ` | ` |
Weibull | ` | ` | ` | ` | ` |
Lognormal | ` | ` | ` | ` | ` |
` | ` | ` | ` | ` | ` | ` | ` | ` | ` | ` | ` | ` | ` | ` | ` |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2.121 | 1.880 | 2.659 | 0.798 | 0.000 | 3.267 | 0.000 | 2.606 | 1.128 | 0.886 | 0.853 | 0.000 | 3.686 | 0.000 | 3.267 |
3 | 1.732 | 1.023 | 1.954 | 0.886 | 0.000 | 2.568 | 0.000 | 2.276 | 1.693 | 0.591 | 0.888 | 0.000 | 4.358 | 0.000 | 2.575 |
4 | 1.500 | 0.729 | 1.628 | 0.921 | 0.000 | 2.266 | 0.000 | 2.088 | 2.059 | 0.486 | 0.880 | 0.000 | 4.698 | 0.000 | 2.282 |
5 | 1.342 | 0.577 | 1.427 | 0.940 | 0.000 | 2.089 | 0.000 | 1.964 | 2.326 | 0.430 | 0.864 | 0.000 | 4.918 | 0.000 | 2.114 |
6 | 1.225 | 0.483 | 1.287 | 0.952 | 0.030 | 1.970 | 0.029 | 1.874 | 2.534 | 0.395 | 0.848 | 0.000 | 5.079 | 0.000 | 2.004 |
7 | 1.134 | 0.419 | 1.182 | 0.959 | 0.118 | 1.882 | 0.113 | 1.806 | 2.704 | 0.370 | 0.833 | 0.205 | 5.204 | 0.076 | 1.924 |
8 | 1.061 | 0.373 | 1.099 | 0.965 | 0.185 | 1.815 | 0.179 | 1.751 | 2.847 | 0.351 | 0.820 | 0.388 | 5.307 | 0.136 | 1.864 |
9 | 1.000 | 0.337 | 1.032 | 0.969 | 0.239 | 1.761 | 0.232 | 1.707 | 2.970 | 0.337 | 0.808 | 0.547 | 5.394 | 0.184 | 1.816 |
10 | 0.949 | 0.308 | 0.975 | 0.973 | 0.284 | 1.716 | 0.276 | 1.669 | 3.078 | 0.325 | 0.797 | 0.686 | 5.469 | 0.223 | 1.777 |
11 | 0.905 | 0.285 | 0.927 | 0.975 | 0.321 | 1.679 | 0.313 | 1.637 | 3.173 | 0.315 | 0.787 | 0.811 | 5.535 | 0.256 | 1.744 |
12 | 0.866 | 0.266 | 0.886 | 0.978 | 0.354 | 1.646 | 0.346 | 1.610 | 3.258 | 0.307 | 0.778 | 0.923 | 5.594 | 0.283 | 1.717 |
13 | 0.832 | 0.249 | 0.850 | 0.979 | 0.382 | 1.618 | 0.374 | 1.585 | 3.336 | 0.300 | 0.770 | 1.025 | 5.647 | 0.307 | 1.693 |
14 | 0.802 | 0.235 | 0.817 | 0.981 | 0.406 | 1.594 | 0.399 | 1.563 | 3.407 | 0.293 | 0.763 | 1.118 | 5.696 | 0.328 | 1.672 |
15 | 0.775 | 0.223 | 0.789 | 0.982 | 0.428 | 1.572 | 0.421 | 1.544 | 3.472 | 0.288 | 0.756 | 1.203 | 5.740 | 0.347 | 1.653 |
16 | 0.750 | 0.212 | 0.763 | 0.984 | 0.448 | 1.552 | 0.440 | 1.526 | 3.532 | 0.283 | 0.750 | 1.282 | 5.782 | 0.363 | 1.637 |
17 | 0.728 | 0.203 | 0.739 | 0.985 | 0.466 | 1.534 | 0.458 | 1.511 | 3.588 | 0.279 | 0.744 | 1.356 | 5.820 | 0.378 | 1.622 |
18 | 0.707 | 0.194 | 0.718 | 0.985 | 0.482 | 1.518 | 0.475 | 1.496 | 3.640 | 0.275 | 0.739 | 1.424 | 5.856 | 0.391 | 1.609 |
19 | 0.688 | 0.187 | 0.698 | 0.986 | 0.497 | 1.503 | 0.490 | 1.483 | 3.689 | 0.271 | 0.733 | 1.489 | 5.889 | 0.404 | 1.596 |
20 | 0.671 | 0.180 | 0.680 | 0.987 | 0.510 | 1.490 | 0.504 | 1.470 | 3.735 | 0.268 | 0.729 | 1.549 | 5.921 | 0.415 | 1.585 |
21 | 0.655 | 0.173 | 0.663 | 0.988 | 0.523 | 1.477 | 0.516 | 1.459 | 3.778 | 0.265 | 0.724 | 1.606 | 5.951 | 0.425 | 1.575 |
22 | 0.640 | 0.167 | 0.647 | 0.988 | 0.534 | 1.466 | 0.528 | 1.448 | 3.819 | 0.262 | 0.720 | 1.660 | 5.979 | 0.435 | 1.565 |
23 | 0.626 | 0.162 | 0.633 | 0.989 | 0.545 | 1.455 | 0.539 | 1.438 | 3.858 | 0.259 | 0.716 | 1.711 | 6.006 | 0.443 | 1.557 |
24 | 0.612 | 0.157 | 0.619 | 0.989 | 0.555 | 1.445 | 0.549 | 1.429 | 3.895 | 0.257 | 0.712 | 1.759 | 6.032 | 0.452 | 1.548 |
25 | 0.600 | 0.153 | 0.606 | 0.990 | 0.565 | 1.435 | 0.559 | 1.420 | 3.931 | 0.254 | 0.708 | 1.805 | 6.056 | 0.459 | 1.541 |
z | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
` | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 |
---|---|---|---|---|---|
1 | 3.0777 | 6.3138 | 12.7062 | 31.8205 | 63.6567 |
2 | 1.8856 | 2.9200 | 4.3027 | 6.9646 | 9.9248 |
3 | 1.6377 | 2.3534 | 3.1824 | 4.5407 | 5.8409 |
4 | 1.5332 | 2.1318 | 2.7764 | 3.7469 | 4.6041 |
5 | 1.4759 | 2.0150 | 2.5706 | 3.3649 | 4.0321 |
6 | 1.4398 | 1.9432 | 2.4469 | 3.1427 | 3.7074 |
7 | 1.4149 | 1.8946 | 2.3646 | 2.9980 | 3.4995 |
8 | 1.3968 | 1.8595 | 2.3060 | 2.8965 | 3.3554 |
9 | 1.3830 | 1.8331 | 2.2622 | 2.8214 | 3.2498 |
10 | 1.3722 | 1.8125 | 2.2281 | 2.7638 | 3.1693 |
11 | 1.3634 | 1.7959 | 2.2010 | 2.7181 | 3.1058 |
12 | 1.3562 | 1.7823 | 2.1788 | 2.6810 | 3.0545 |
13 | 1.3502 | 1.7709 | 2.1604 | 2.6503 | 3.0123 |
14 | 1.3450 | 1.7613 | 2.1448 | 2.6245 | 2.9768 |
15 | 1.3406 | 1.7531 | 2.1314 | 2.6025 | 2.9467 |
16 | 1.3368 | 1.7459 | 2.1199 | 2.5835 | 2.9208 |
17 | 1.3334 | 1.7396 | 2.1098 | 2.5669 | 2.8982 |
18 | 1.3304 | 1.7341 | 2.1009 | 2.5524 | 2.8784 |
19 | 1.3277 | 1.7291 | 2.0930 | 2.5395 | 2.8609 |
20 | 1.3253 | 1.7247 | 2.0860 | 2.5280 | 2.8453 |
21 | 1.3232 | 1.7207 | 2.0796 | 2.5176 | 2.8314 |
22 | 1.3212 | 1.7171 | 2.0739 | 2.5083 | 2.8188 |
23 | 1.3195 | 1.7139 | 2.0687 | 2.4999 | 2.8073 |
24 | 1.3178 | 1.7109 | 2.0639 | 2.4922 | 2.7969 |
25 | 1.3163 | 1.7081 | 2.0595 | 2.4851 | 2.7874 |
26 | 1.3150 | 1.7056 | 2.0555 | 2.4786 | 2.7787 |
27 | 1.3137 | 1.7033 | 2.0518 | 2.4727 | 2.7707 |
28 | 1.3125 | 1.7011 | 2.0484 | 2.4671 | 2.7633 |
29 | 1.3114 | 1.6991 | 2.0452 | 2.4620 | 2.7564 |
30 | 1.3104 | 1.6973 | 2.0423 | 2.4573 | 2.7500 |
Inf | 1.2816 | 1.6449 | 1.9600 | 2.3263 | 2.5758 |
` | 0.995 | 0.99 | 0.975 | 0.95 | 0.9 | 0.75 | 0.5 | 0.25 | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.10 | 0.45 | 1.32 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 | 10.83 |
2 | 0.01 | 0.02 | 0.05 | 0.10 | 0.21 | 0.58 | 1.39 | 2.77 | 4.61 | 5.99 | 7.38 | 9.21 | 10.60 | 13.82 |
3 | 0.07 | 0.11 | 0.22 | 0.35 | 0.58 | 1.21 | 2.37 | 4.11 | 6.25 | 7.81 | 9.35 | 11.34 | 12.84 | 16.27 |
4 | 0.21 | 0.30 | 0.48 | 0.71 | 1.06 | 1.92 | 3.36 | 5.39 | 7.78 | 9.49 | 11.14 | 13.28 | 14.86 | 18.47 |
5 | 0.41 | 0.55 | 0.83 | 1.15 | 1.61 | 2.67 | 4.35 | 6.63 | 9.24 | 11.07 | 12.83 | 15.09 | 16.75 | 20.52 |
6 | 0.68 | 0.87 | 1.24 | 1.64 | 2.20 | 3.45 | 5.35 | 7.84 | 10.64 | 12.59 | 14.45 | 16.81 | 18.55 | 22.46 |
7 | 0.99 | 1.24 | 1.69 | 2.17 | 2.83 | 4.25 | 6.35 | 9.04 | 12.02 | 14.07 | 16.01 | 18.48 | 20.28 | 24.32 |
8 | 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 5.07 | 7.34 | 10.22 | 13.36 | 15.51 | 17.53 | 20.09 | 21.95 | 26.12 |
9 | 1.73 | 2.09 | 2.70 | 3.33 | 4.17 | 5.90 | 8.34 | 11.39 | 14.68 | 16.92 | 19.02 | 21.67 | 23.59 | 27.88 |
10 | 2.16 | 2.56 | 3.25 | 3.94 | 4.87 | 6.74 | 9.34 | 12.55 | 15.99 | 18.31 | 20.48 | 23.21 | 25.19 | 29.59 |
11 | 2.60 | 3.05 | 3.82 | 4.57 | 5.58 | 7.58 | 10.34 | 13.70 | 17.28 | 19.68 | 21.92 | 24.72 | 26.76 | 31.26 |
12 | 3.07 | 3.57 | 4.40 | 5.23 | 6.30 | 8.44 | 11.34 | 14.85 | 18.55 | 21.03 | 23.34 | 26.22 | 28.30 | 32.91 |
13 | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 9.30 | 12.34 | 15.98 | 19.81 | 22.36 | 24.74 | 27.69 | 29.82 | 34.53 |
14 | 4.07 | 4.66 | 5.63 | 6.57 | 7.79 | 10.17 | 13.34 | 17.12 | 21.06 | 23.68 | 26.12 | 29.14 | 31.32 | 36.12 |
15 | 4.60 | 5.23 | 6.26 | 7.26 | 8.55 | 11.04 | 14.34 | 18.25 | 22.31 | 25.00 | 27.49 | 30.58 | 32.80 | 37.70 |
16 | 5.14 | 5.81 | 6.91 | 7.96 | 9.31 | 11.91 | 15.34 | 19.37 | 23.54 | 26.30 | 28.85 | 32.00 | 34.27 | 39.25 |
17 | 5.70 | 6.41 | 7.56 | 8.67 | 10.09 | 12.79 | 16.34 | 20.49 | 24.77 | 27.59 | 30.19 | 33.41 | 35.72 | 40.79 |
18 | 6.26 | 7.01 | 8.23 | 9.39 | 10.86 | 13.68 | 17.34 | 21.60 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16 | 42.31 |
19 | 6.84 | 7.63 | 8.91 | 10.12 | 11.65 | 14.56 | 18.34 | 22.72 | 27.20 | 30.14 | 32.85 | 36.19 | 38.58 | 43.82 |
20 | 7.43 | 8.26 | 9.59 | 10.85 | 12.44 | 15.45 | 19.34 | 23.83 | 28.41 | 31.41 | 34.17 | 37.57 | 40.00 | 45.31 |
21 | 8.03 | 8.90 | 10.28 | 11.59 | 13.24 | 16.34 | 20.34 | 24.93 | 29.62 | 32.67 | 35.48 | 38.93 | 41.40 | 46.80 |
22 | 8.64 | 9.54 | 10.98 | 12.34 | 14.04 | 17.24 | 21.34 | 26.04 | 30.81 | 33.92 | 36.78 | 40.29 | 42.80 | 48.27 |
23 | 9.26 | 10.20 | 11.69 | 13.09 | 14.85 | 18.14 | 22.34 | 27.14 | 32.01 | 35.17 | 38.08 | 41.64 | 44.18 | 49.73 |
24 | 9.89 | 10.86 | 12.40 | 13.85 | 15.66 | 19.04 | 23.34 | 28.24 | 33.20 | 36.42 | 39.36 | 42.98 | 45.56 | 51.18 |
25 | 10.52 | 11.52 | 13.12 | 14.61 | 16.47 | 19.94 | 24.34 | 29.34 | 34.38 | 37.65 | 40.65 | 44.31 | 46.93 | 52.62 |
30 | 13.79 | 14.95 | 16.79 | 18.49 | 20.60 | 24.48 | 29.34 | 34.80 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67 | 59.70 |
40 | 20.71 | 22.16 | 24.43 | 26.51 | 29.05 | 33.66 | 39.34 | 45.62 | 51.81 | 55.76 | 59.34 | 63.69 | 66.77 | 73.40 |
50 | 27.99 | 29.71 | 32.36 | 34.76 | 37.69 | 42.94 | 49.33 | 56.33 | 63.17 | 67.50 | 71.42 | 76.15 | 79.49 | 86.66 |
60 | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 52.29 | 59.33 | 66.98 | 74.40 | 79.08 | 83.30 | 88.38 | 91.95 | 99.61 |
70 | 43.28 | 45.44 | 48.76 | 51.74 | 55.33 | 61.70 | 69.33 | 77.58 | 85.53 | 90.53 | 95.02 | 100.43 | 104.21 | 112.32 |
80 | 51.17 | 53.54 | 57.15 | 60.39 | 64.28 | 71.14 | 79.33 | 88.13 | 96.58 | 101.88 | 106.63 | 112.33 | 116.32 | 124.84 |
90 | 59.20 | 61.75 | 65.65 | 69.13 | 73.29 | 80.62 | 89.33 | 98.65 | 107.57 | 113.15 | 118.14 | 124.12 | 128.30 | 137.21 |
100 | 67.33 | 70.06 | 74.22 | 77.93 | 82.36 | 90.13 | 99.33 | 109.14 | 118.50 | 124.34 | 129.56 | 135.81 | 140.17 | 149.45 |
` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | ` |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 243.91 | 245.95 | 248.01 | 249.05 | 250.10 | 251.14 | 252.20 | 253.25 | 254.31 |
2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.41 | 19.43 | 19.45 | 19.45 | 19.46 | 19.47 | 19.48 | 19.49 | 19.50 |
3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.74 | 8.70 | 8.66 | 8.64 | 8.62 | 8.59 | 8.57 | 8.55 | 8.53 |
4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.91 | 5.86 | 5.80 | 5.77 | 5.75 | 5.72 | 5.69 | 5.66 | 5.63 |
5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.68 | 4.62 | 4.56 | 4.53 | 4.50 | 4.46 | 4.43 | 4.40 | 4.36 |
6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.00 | 3.94 | 3.87 | 3.84 | 3.81 | 3.77 | 3.74 | 3.70 | 3.67 |
7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.57 | 3.51 | 3.44 | 3.41 | 3.38 | 3.34 | 3.30 | 3.27 | 3.23 |
8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.28 | 3.22 | 3.15 | 3.12 | 3.08 | 3.04 | 3.01 | 2.97 | 2.93 |
9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.07 | 3.01 | 2.94 | 2.90 | 2.86 | 2.83 | 2.79 | 2.75 | 2.71 |
10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.91 | 2.85 | 2.77 | 2.74 | 2.70 | 2.66 | 2.62 | 2.58 | 2.54 |
12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.69 | 2.62 | 2.54 | 2.51 | 2.47 | 2.43 | 2.38 | 2.34 | 2.30 |
15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.48 | 2.40 | 2.33 | 2.29 | 2.25 | 2.20 | 2.16 | 2.11 | 2.07 |
20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.28 | 2.20 | 2.12 | 2.08 | 2.04 | 1.99 | 1.95 | 1.90 | 1.84 |
24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 | 2.18 | 2.11 | 2.03 | 1.98 | 1.94 | 1.89 | 1.84 | 1.79 | 1.73 |
30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 2.09 | 2.01 | 1.93 | 1.89 | 1.84 | 1.79 | 1.74 | 1.68 | 1.62 |
40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 2.00 | 1.92 | 1.84 | 1.79 | 1.74 | 1.69 | 1.64 | 1.58 | 1.51 |
60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.92 | 1.84 | 1.75 | 1.70 | 1.65 | 1.59 | 1.53 | 1.47 | 1.39 |
120 | 3.92 | 3.07 | 2.68 | 2.45 | 2.29 | 2.18 | 2.09 | 2.02 | 1.96 | 1.91 | 1.83 | 1.75 | 1.66 | 1.61 | 1.55 | 1.50 | 1.43 | 1.35 | 1.25 |
Inf | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 2.01 | 1.94 | 1.88 | 1.83 | 1.75 | 1.67 | 1.57 | 1.52 | 1.46 | 1.39 | 1.32 | 1.22 | 1.00 |
` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | ` |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4052 | 5000 | 5403 | 5625 | 5764 | 5859 | 5928 | 5981 | 6022 | 6056 | 6106 | 6157 | 6209 | 6235 | 6261 | 6287 | 6313 | 6339 | 6366 |
2 | 98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 | 99.36 | 99.37 | 99.39 | 99.40 | 99.42 | 99.43 | 99.45 | 99.46 | 99.47 | 99.47 | 99.48 | 99.49 | 99.50 |
3 | 34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 | 27.67 | 27.49 | 27.35 | 27.23 | 27.05 | 26.87 | 26.69 | 26.60 | 26.50 | 26.41 | 26.32 | 26.22 | 26.13 |
4 | 21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 | 14.98 | 14.80 | 14.66 | 14.55 | 14.37 | 14.20 | 14.02 | 13.93 | 13.84 | 13.75 | 13.65 | 13.56 | 13.46 |
5 | 16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 | 10.46 | 10.29 | 10.16 | 10.05 | 9.89 | 9.72 | 9.55 | 9.47 | 9.38 | 9.29 | 9.20 | 9.11 | 9.02 |
6 | 13.75 | 10.92 | 9.78 | 9.15 | 8.75 | 8.47 | 8.26 | 8.10 | 7.98 | 7.87 | 7.72 | 7.56 | 7.40 | 7.31 | 7.23 | 7.14 | 7.06 | 6.97 | 6.88 |
7 | 12.25 | 9.55 | 8.45 | 7.85 | 7.46 | 7.19 | 6.99 | 6.84 | 6.72 | 6.62 | 6.47 | 6.31 | 6.16 | 6.07 | 5.99 | 5.91 | 5.82 | 5.74 | 5.65 |
8 | 11.26 | 8.65 | 7.59 | 7.01 | 6.63 | 6.37 | 6.18 | 6.03 | 5.91 | 5.81 | 5.67 | 5.52 | 5.36 | 5.28 | 5.20 | 5.12 | 5.03 | 4.95 | 4.86 |
9 | 10.56 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.61 | 5.47 | 5.35 | 5.26 | 5.11 | 4.96 | 4.81 | 4.73 | 4.65 | 4.57 | 4.48 | 4.40 | 4.31 |
10 | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 | 4.94 | 4.85 | 4.71 | 4.56 | 4.41 | 4.33 | 4.25 | 4.17 | 4.08 | 4.00 | 3.91 |
12 | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 | 4.39 | 4.30 | 4.16 | 4.01 | 3.86 | 3.78 | 3.70 | 3.62 | 3.54 | 3.45 | 3.36 |
15 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.89 | 3.80 | 3.67 | 3.52 | 3.37 | 3.29 | 3.21 | 3.13 | 3.05 | 2.96 | 2.87 |
20 | 8.10 | 5.85 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 | 3.46 | 3.37 | 3.23 | 3.09 | 2.94 | 2.86 | 2.78 | 2.69 | 2.61 | 2.52 | 2.42 |
24 | 7.82 | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 | 3.26 | 3.17 | 3.03 | 2.89 | 2.74 | 2.66 | 2.58 | 2.49 | 2.40 | 2.31 | 2.21 |
30 | 7.56 | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 | 3.07 | 2.98 | 2.84 | 2.70 | 2.55 | 2.47 | 2.39 | 2.30 | 2.21 | 2.11 | 2.01 |
40 | 7.31 | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.89 | 2.80 | 2.66 | 2.52 | 2.37 | 2.29 | 2.20 | 2.11 | 2.02 | 1.92 | 1.80 |
60 | 7.08 | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 | 2.63 | 2.50 | 2.35 | 2.20 | 2.12 | 2.03 | 1.94 | 1.84 | 1.73 | 1.60 |
120 | 6.85 | 4.79 | 3.95 | 3.48 | 3.17 | 2.96 | 2.79 | 2.66 | 2.56 | 2.47 | 2.34 | 2.19 | 2.03 | 1.95 | 1.86 | 1.76 | 1.66 | 1.53 | 1.38 |
Inf | 6.63 | 4.61 | 3.78 | 3.32 | 3.02 | 2.80 | 2.64 | 2.51 | 2.41 | 2.32 | 2.18 | 2.04 | 1.88 | 1.79 | 1.70 | 1.59 | 1.47 | 1.32 | 1.00 |
References
[[1]]
Krishnamoorthi K (2006). _A First Course in Quality Engineering:
Integrating Statistical and Management Methods of Quality_. Pearson
Prentice Hall. ISBN 9780131472013, <URL:
https://books.google.com/books?id=lPQJAQAAMAAJ>.
[[2]]
Kutner M, Nachtsheim C, Neter J, Li W (2004). _Applied Linear
Statistical Models with Student CD_. McGraw-Hill
Companies,Incorporated. ISBN 9780073108742, <URL:
https://books.google.com/books?id=0Qq-swEACAAJ>.
[[3]]
Sullivan W, Wicks E, Luxhoj J (2006). _Engineering Economy_, number v.
1 series Engineering Economy. Pearson/Prentice Hall. ISBN
9780131486492, <URL: https://books.google.com/books?id=6pcoAQAAMAAJ>.
[[4]]
Gross D, Shortle J, Thompson J, Harris C (2011). _Fundamentals of
Queueing Theory_, series Wiley Series in Probability and Statistics.
Wiley. ISBN 9781118211649, <URL:
https://books.google.com/books?id=K3lQGeCtAJgC>.
[[5]]
Winston W (2003). _Introduction to Probability Models_. Cengage
Learning. ISBN 9780534405786, <URL:
https://books.google.com/books?id=L9yURQAACAAJ>.
[[6]]
Niebel B, Freivalds A (2003). _Methods, Standards, and Work Design_,
series McGraw-Hill series in industrial engineering and management
science. McGraw-Hill. ISBN 9780072468243, <URL:
https://books.google.com/books?id=ApXSoagqrxcC>.
ggplot2 xtable queueing theory RMarkdown R Industrial Engineer Operations Research
4283 Words
2018-05-09 00:00